
Stacked Spatial-Pyramid Kernel: An Object-Class Recognition Method to
Combine Scores from Random Trees

N. Larios∗, J. Lin†, M. Zhang‡, D. Lytle†, A. Moldenke†, L. Shapiro∗, T. Dietterich†
∗University of Washington, †Oregon State University, ‡University of California, San Diego

∗ {nlarios@u, shapiro@cs}.washington.edu, ‡ mezhang@ucsd.edu
† {linju@eecs, lytleda@science, moldenka@science, tgd@eecs }.oregonstate.edu

Abstract

The combination of local features, complementary fea-
ture types, and relative position information has been suc-
cessfully applied to many object-class recognition tasks.
Stacking is a common classification approach that com-
bines the results from multiple classifiers, having the added
benefit of allowing each classifier to handle a different fea-
ture space. However, the standard stacking method by its
own nature discards any spatial information contained in
the features, because only the combination of raw classifi-
cation scores are input to the final classifier. The object-
class recognition method proposed in this paper combines
different feature types in a new stacking framework that effi-
ciently quantizes input data and boosts classification accu-
racy, while allowing the use of spatial information. This
classification method is applied to the task of automated
insect-species identification for biomonitoring purposes.

The test data set for this work contains 4722 images with
29 insect species, belonging to the three most common or-
ders used to measure stream water quality, several of which
are closely related and very difficult to distinguish. The
specimens are in different 3D positions, different orienta-
tions, and different developmental and degradation stages
with wide intra-class variation. On this very challenging
data set, our new algorithm outperforms other classifiers,
showing the benefits of using spatial information in the
stacking framework with multiple dissimilar feature types.

1. Introduction

Object-class recognition is one of the main research ar-
eas in computer vision. Its goal is to understand and im-
plement, in machine vision systems, the human ability of
recognizing the abstract class to which a previously unseen
object belongs. We extend the state-of-the-art recognition
approaches that use a set of random trees to discrimina-
tively structure the information provided by the feature data

obtained from the training and testing images. The random
trees stage replaces unsupervised cluster model learning and
cluster assignment used in visual dictionary methods. The
use of decision tree ensemble methods [9, 13, 16] has re-
placed the standard approach of employing unsupervised
visual dictionaries [8] as the initial stage to structure and/or
quantize the input features in classification methods. An in-
termediate approach is the creation of quasi-supervised [15]
or unsupervised dictionaries that have some keywords elim-
inated later by discriminative measures.

In the work presented in this paper, we pursue an ap-
proach that retains the simplicity and elegance of combining
features of the evidence tree method [13], while employing
the local-feature spatial information in a robust way. The
use of spatial information has proven useful in visual dic-
tionary [10] and tree ensemble methods [9, 16] for generic
object recognition and image classification tasks. Our work
uses a spatial pyramid-kernel SVM classifier [10] while
allowing diverse feature types that can complement each
other to be combined, and it has been shown to be a suc-
cessful technique to boost classification accuracy [1, 13].
Our classification framework is able to consider the discrim-
inative structures from the parts of different objects invari-
ant to small changes in positions and size. We illustrate
our object-class recognition by focusing on a relevant envi-
ronmental protection application, implementing automated
insect-species identification in order to obtain biodiversity
measurements that support and enable biomonitoring.

Insect-Species Classification Biomonitoring is the as-
sessment of the status and trend of the environment using
counts of a set of defined species known for their suscep-
tibility and capacity to accumulate the effects of environ-
mental changes over time. One of the most widely used
biological monitoring metrics for water quality assessment
is the population count of specimens from the insect orders:
Ephemeroptera (mayflies), Plecoptera (stoneflies), and Tri-
choptera (caddisflies), often abbreviated as EPT. Species
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within these orders vary greatly in their susceptibility to
pollution and so are robust indicators of stream water qual-
ity. Identifying and enumerating EPT samples is often a
labor-intensive and time-consuming process, generally in-
volving expert entomologists performing manual classifica-
tion. This paper describes our method applied to insect-
species identification and its application and evaluation on
an image data set collected to emulate the species distri-
bution found in typical EPT biomonitoring samples. This
set of EPT specimen images contains individuals from 29
species, and thus it is referred as the EPT29 dataset.

Related Work Previous work in automated species
recognition for biological monitoring of water quality have
only included subsets of the species commonly utilized in
EPT measuring indexes. In [9, 12, 13] experiments on nine
stonefly taxa (Plecoptera) obtained very low classification
errors. Earlier research [8] from the same group of authors
evaluated the feasibility of automated stonefly species iden-
tification with existing computer vision and machine learn-
ing methods. Other work on biological water quality as-
sessment has been focused on algae specimens [17]. In
this series of studies regarding water quality assessment, the
progression of recognition methods from simple pattern-
recognition approaches to unsupervised and later discrim-
inative dictionaries can be seen. Orchard pest control [18]
is another application of automated insect identification. In
this case, local and global features were combined to iden-
tify pest species. In [2, 7, 14] generic object recognition
methods were applied to the recognition of winged insects.
As part of the mobile applications trend, an automated sys-
tem for on-field botanical-species identification, using leaf
shape and venation patterns, has been implemented [19].

Contribution Our method enables the combination of
dissimilar local features generated by different detectors
and descriptors in a discriminative framework. A diverse set
of features is an important factor in our current application
given wide inter-species appearance variation due to differ-
ent 3D specimen position and orientation, natural diversity,
developmental stages, and degradation after capture. We
use shape and edge keypoints and a dense grid of patches as
means to obtain useful regions for local features, which are
described by the HOG and SIFT appearance descriptors and
by the beam-angle histogram for shape. The relative posi-
tion information represented by a spatial histogram is gen-
erated by the initial random trees stage using the appearance
and shape feature scores. This combination of features and
the direct use of spatial information are proved successful
by a large classification accuracy increase in the challeng-
ing EPT29 identification task.

 

Spatial histogram 
channel merging 

Stacked spatial‐
pyramid SVM 

Prediction 

RT1 

RT2 

RT3 

SVM 

HOG 

BAS 

SIFT 

Feature 
extraction 

Descriptor 
classification 

Scores 

Figure 1. Overview of the stacking classification architecture.

2. Stacked Spatial Classifier for Object-Class
Recognition

The proposed classification architecture draws on the
idea of using evidence trees for dictionary-free classifica-
tion [13] and on the use of spatial information at the final
classification level [9] to identify the species of the spec-
imen. Insect identification research in [8, 13] has shown
that combining multiple interest region detectors and their
respective descriptors gives better results than single de-
tectors. The benefit of feature combination has also been
shown to work well in stacking methods for object recogni-
tion [1]. The need for a diverse set of features becomes
even more evident when we consider the large variation
present in all 29 species chosen for our current dataset. It
becomes obvious that a combination of features is neces-
sary, because no single feature type would distinguish be-
tween all of them, making this a challenging problem.

2.1. Overall Class Prediction

We now give an overview of the prediction process of
our method. For the EPT29 dataset the image background
is first segmented out and the specimen is automatically
aligned with the horizontal axis of the image. The speci-
mens then are oriented facing left by a linear-kernel SVM
classifier evaluated on a global HOG [6] descriptor trained
to distinguish between specimens of this dataset facing left
or right. Samples of the resulting images are shown in rows
(a) and (c) of Figure 3. After this preprocessing step, our
classification framework is composed of three main stages:
(1) region detection and descriptor extraction of low-level
local features, (2) local-feature classification and spatial his-
togram computation, and (3) insect-species prediction. The
prediction framework of our system is shown in Figure 1.

The initial classification stage of the system is composed
by a set of C classifiers that match every (detector, de-
scriptor) feature type employed. Q is the set of (detec-



tor, descriptor) pairs that are applied to each new image I
to be evaluated. The stacking component of our method
enables the combination of very different types of pair-
ings, each with different invariant characteristics as well
as the retention of their spatial information. In this work
the employed pairs are: (1) salient points of high curva-
ture [5] with a beam angle descriptor [3], (2) dense grid of
overlapping image patches with the HOG descriptor, and
(3) the difference of Gaussians detector and SIFT descrip-
tor [11]. The application of each pair in Q generates a
set of detections represented by a set of descriptor vectors
BcI = {xcI,1, . . . , xcI,Nc

} where Nc is the number of detec-
tions obtained by the (detector, descriptor) pair c.

The set of initial local-feature classifiers is composed
of a random-forest classifier RT c for each combination c.
These classifiers are employed to obtain a probability clas-
sification score of each of the M classes for every descrip-
tor vector xcI,j . The probability score p ∈ RM is an M -
dimensional vector employed to build the spatial histogram
of classification scores Hc,L

I of the finest spatial-grid reso-
lution level L. This histogram is then used to construct a se-
quence of histograms with grid density-levels ` = 0, . . . , L
in the same manner as in [10]. Each histogram Hc,` with
resolution level ` has 2` cells along every spatial dimension
(a total of 22` cells) and M channels in every cell Hc,`(i).
The set of histograms {Hc,`

I |c = 1, . . . , C} obtained with
the set of random trees {RT c} are merged along the class-
channel dimension into a singe spatial histogram H`

I of
C × M channels and 22` spatial cells. The sequence of
histograms {H`

I |` = 0, . . . , L} constitutes the feature vec-
tor of image I for the final classifier, which is well suited
for the spatial-pyramid kernel.

2.2. Combining Local-Classification Scores

The procedure to generate the histogram Hc,L
I of image

I is as follows. For every classifier c of Q, every descrip-
tor xcI,j of BcI is evaluated by each tree in RT c. Every tree
votes for the class of the descriptor. The class probabil-
ity score pcI,j is computed by summing the votes for each
class m in the vector component pcI,j [m]. The values of
pcI,j are then normalized to sum to 1, approximating the
posterior probability p(m|xcI,j). After the scores are ob-
tained for every element in BcI , for each spatial cell i at
grid density L, all the score vectors {pcI,j |lcI,j ∈ i} whose
descriptor location lcI,j falls within the ith cell grid are ac-
cumulated with vector addition in the respective channels
of bin Hc,L(i). The accumulation of discriminative infor-
mation in the form of scores is the main difference between
our method and the original spatial-pyramid kernel SVM
method [10], which only accumulates cluster assignment
counts. These histograms carry the spatial information of
local features to the stacked classifiers, which contrasts with
[1], where spatial information is only employed at the first

classification level. Thus our method has all the benefits of
the bag-of-features approach while accumulating descriptor
classification scores.

The use of the spatial histograms also has the advantage
of indirectly maintaining information about the number of
features detected in different image regions, which corre-
lates with the image content. The results presented in Sec-
tion 4.3 using the histograms generated with a single pair c
compared with the ones obtained by combining all pairs in
Q show that, as with standard stacking methods, ours bene-
fits from combining complementary feature types in HL

I .

2.3. Stacked Spatial-Pyramid Kernel SVM

In order to perform the pyramid matching in two-
dimmensional image space, a sequence of histograms {H`

I}
matching the grids at different resolution levels ` =
0, . . . , L is built. Let 1,...,4 be the grid cells at level ` + 1
that subdivide cell i at level `. The recursive process to
compute the sequence of histograms starts with HL

I . All
the bins in cell i at level ` are computed with the subdi-
visions at level ` + 1 by the following vector relationship
Hc,`(i) =

∑4
k=1H

c,`+1(k). We refer to the whole se-
quence of resolution-level histograms of image I as HI .
Like the feature counts in the original spatial-pyramid ker-
nel, the class probability scores are amenable to this accu-
mulation process. For a pair of score histograms HI1 and
HI2 computed across all the initial classifiers c represent-
ing image I1 and I2, the spatial-pyramid matching kernel
K = K(HI1 , HI2) is

K =
L∑
`=0

1
2L−`

(
I(H`

I1 , H
`
I2)− I(H`+1

I1
, H`+1

I2
)
)

(1)

where ` indexes the spatial resolution levels. I(H`
I1
, H`

I2
)

denotes the histogram intersection distance across all class
channels and spatial cells of level `. Note that for ` = L+1
this distance has value zero. The kernel K can handle dif-
ferent numbers of detections in each image. The similarity
value that K represents is directly related to the number of
descriptors and their classification score values. The weight
associated with level ` is inversely proportional to the cell-
width value; thus penalizing matches found in larger cells.
These coarser-level matches are still used; they account for
larger changes in position. Matches at the finest level are
weighted the most, while still being robust to small changes
in position. Our method then employs kernel K with the
standard learning and prediction SVM algorithms. Experi-
mental results described in Table 1 show the benefits of this
image histogram descriptor with this type of kernel classi-
fier, which outperformed the other stacked classifiers on the
same histograms of feature combinations.



3. Stacked Training Set Creation and Learning

As indicated in the classification overview, our method is
composed of two classification stages. The learning process
thus requires three different procedures: (1) learning of the
random forest classifiers {RT c} that will generate the local
feature classification scores, (2) creation of the set of spatial
histograms of scores H that constitutes the final classifier
training set, and (3) learning of the final stacked spatial-
pyramid classifier. This procedure is aimed at obtaining ro-
bust classifiers capable of handling all the variations present
in the dataset while achieving high classification accuracy.

Random Trees Learning For each (detector, descriptor)
pair c, a set of random trees RT c is created from a train-
ing set Bc. For each training image I with category yI ,
every descriptor of set BcI of image I forms a training pair
(xcI,j , yI). The training data Bcτ of size N of each tree τ is
obtained through a bootstrap sampling procedure by draw-
ing at random with replacement N = |Bc| descriptors with
uniform probability. A set of Υ random trees is learned [4]
from different Bcτ training sets, constrained for maximum
tree depth and a minimum of 10 examples arriving at each
leaf in the learning procedure. The parameter values for
this learning step were determined experimentally. Figure 2
shows the relative insensitivity of the overall accuracy after
150 trees. In the tree learning procedure, every time a node
is added, a subset of the attributes of the training examples
of c ( region descriptor and normalized region location) are
randomly selected along with a threshold value as the the
node splitting function. This combination of attributes al-
lows the specialization of local classifiers in the first stage,
which benefits the coupling of position and score accumula-
tion as input of the stacked classifier. As part of the training
process, for every tree τ , all the out-of-bag (OOB) training
examples of τ (descriptors not used to train τ ) are recorded.
This information is then used in the next learning step to
generate the training set for the stacked classifier.

Stacked Classifier Training Set Following the learn-
ing of the random trees classifiers, the training set for the
stacked classifier is created. This set contains one spatial
histogram per image. Let Hc be the set of labels and train-
ing histograms pairs obtained using single feature c and
H be the set of label and training histogram pairs com-
bining all the features from Q. After the training of each
RT c classifier, the spatial histogram Hc

I of each image I in
the training set is constructed using the same training de-
scriptors from set Bc in a procedure similar to the one de-
scribed in Section 2.2. The only difference in computing
Hc
I is that for every descriptor xcI,j of BcI being evaluated,

its class-probability score pcI,j is computed using only the
votes from trees where this descriptor was an OOB element

during training. Thus the values of pcI,j are normalized by
the number of OOB tree votes instead of the total tree count.
It is important to only use the trees where the example xcI,j
was never seen to model the behavior for unseen descriptors
of a novel image being classified in the training setHc. The
class label of image I is then assigned as the label of Hc

I .
All the pairs (Hc

I , yI) are combined to create the stacked
training set Hc. The combined training set H is built by
merging all the histograms Hc

I , of every training image I
along the class-channel dimension. In every fold, the train-
ing set is composed of approximately two-thirds of the data
(≈ 3148 images) using a 3-fold cross-validation setup.

Stacked Spatial Classifier Learning The parameters for
the stacked spatial-pyramid kernel SVM learning algorithm
are obtained by a logarithmic grid-search with a 5-fold
cross-validation. For the multi-class experiments performed
in this paper, a one-versus-all framework was employed.
This training stage of the stacked SVM classifier can be
performed with a single-feature set Hc or with a multiple-
feature set H. The spatial-pyramid kernel K is used in the
loss and discriminant functions of the SVM learning. This
kernel is well suited for the histogram image representa-
tion HI , because classification scores just like assignment
counts [10], can be accumulated in the spatial pyramid.

4. Insect-Species Identification Experiments
In this section, we describe the series of experiments

evaluating our method in the challenging EPT29 dataset and
report species and overall classification accuracy results.
The EPT29 dataset contains 4722 images divided into 29
species as indicated in the first column of Table 1. The spec-
imens used to create this dataset were captured and identi-
fied by experts aiming to approximately emulate a biomoni-
toring sample for stream quality assessment. Note that some
of these species have as many as ten times more images than
the species with the fewest images. This type of imbalance
tends to make identification tasks more challenging.

4.1. Random Trees Local Features

For the EPT29 dataset experiments, our method has C =
3 initial RT c classifiers. The (detector, descriptor) pairs c
were selected to use regions with complementary position,
shape, and orientation attributes; the descriptors for those
regions were selected with that criteria as well. The pairs
c employed are denoted as follows: dense grid of overlap-
ping image patches with the HOG descriptor (HOG), salient
points of high curvature with a beam angle and SIFT de-
scriptors (BAS+SIFT), and the SIFT difference of Gaus-
sians detector and descriptor (SIFT).

A detailed description of the feature-extraction proce-
dures follows. (1) HOG [6] descriptors are obtained over



a dense grid of 16×16 overlapping image patches, regard-
less of the image size. These patches overlap by a half to
overcome small changes in position. The HOG descrip-
tor has proven really useful in detection tasks given the
highly-redundant nature of its data. This grid-based fea-
ture can be applied even with the large changes in 3D po-
sition present in the data thanks to the orientation normal-
ization process and the properties of the local features. (2)
BAS+SIFT descriptors are obtained on salient points of high
curvature along the contour by using the IPAN [5] algo-
rithm. For each salient point in the contour, a beam angle
statistics (BAS) descriptor similar to [3] is generated and
concatenated with a SIFT descriptor enhancing informa-
tion by combining shape and appearance. To compute the
BAS descriptor a set of lines, so-called beams, that originate
from the anchor points connecting to each of the remaining
salient points in the supporting region are employed. The
angles between pairs of lines are calculated and accumu-
lated with a weight inversely proportional to the perimeter
distance. The BAS descriptor is the weighted histogram of
these angles. The radius of the supporting region is selected
adaptively to the length of the contour. A multiscale de-
scriptor is generated by concatenating descriptors of differ-
ent region size. (3) SIFT features are found with the dif-
ference of Gaussians detector and represented by the SIFT
descriptor as described by Lowe [11]. These isotropic de-
scriptors are scale and image-plane rotation invariant.

4.2. Experimental Setup

All the different species-identification experiments are
performed with a stratified 3-fold cross validation setup.
Also, to make the results completely comparable, equal-
sized random dataset partitions are the same in every fold.
Given that 1–4 images were obtained for every specimen,
the partitions are constrained to keeping all the images of
any given specimen in a single fold. In each of the different
images of a specimen, it is found in different 3D positions,
orientations and poses. At every iteration of the experiment,
two folds are used for training and one for testing. The re-
sults combining the predictions of the three testing proce-
dures are reported. The values of the tree count Υ and the
maximum tree depth parameters of every classifier c are de-
termined experimentally. Figure 2 shows the behavior of
the overall accuracy of BAS+SIFT features in relation to
different parameter value combinations. The graph shows
that accuracy increases flatten after 150 trees with a maxi-
mum depth of 25. For the other two pairs ofQ the accuracy
presents a similar behavior; thus the parameter values for
the tree count Υ and maximum depth were set to 200 and
25 respectively for all three classifiers. For the spatial his-
togram Hc

I , the number of resolution levels L is set to 2 for
a 4×4 grid at the finest level. The number of channels M is
29 constituting a 464-dimension image descriptor.
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Figure 2. Overall accuracy graphs for the stacked spatial-pyramid
kernel SVM with single feature pair BAS+SIFT showing the effect
of the first-stage tree count Υ and maximum tree depth parameters.

4.3. Results

Table 1 reports the species and overall classification rates
of the stacked spatial-pyramid kernel SVM method (Pyr),
stacked random-forest classifier (RTs 3Cmb) and RBF ker-
nel SVM (RBF 3Cmb), and a single-level classifier with a
χ2 kernel SVM on a global HOG descriptor. The stacked
spatial-pyramid kernel classifier is evaluated with every pair
and with all combined. The other two stacked classifiers are
only applied to the 3-feature combination (3Cmb). The ta-
ble shows the effects of the number of images on the species
accuracy, most of the species with the lowest maximum ac-
curacy have the least number of images. The SVM classi-
fier on a global HOG descriptor (χ2 HOGgbl) is presented
for comparison as a baseline, often used for state-of-the-art
object-class detection. The benefit of stacking is clear by
comparing the single stage HOG results to the local HOG
stacked method. Results with χ2 kernel are reported, in-
stead of the standard linear kernel which were even lower.
The results clearly indicate the beneficial coupling of the
spatial histograms of scores with the spatial-pyramid ker-
nel; the two non-pyramid stacked classifiers only had two
of the highest species accuracies. Even the single feature
spatial-pyramid classifier (Pyr SIFT) had an overall classi-
fication rate similar to the highest of the non-pyramid classi-
fiers using the combined features. Finally, we note the large
accuracy boost obtained by using feature combination (Pyr
3Cmb) with our stacked spatial-pyramid kernel method.

Discriminative Region Patterns Figure 3 shows repre-
sentative high-score region patterns of the spatial-histogram
channel m corresponding to the actual species of the dis-
played specimen. Each of the feature-type pairs c are shown



Image χ2 HOGgbl Pyr. HOGloc Pyr. BAS Pyr. SIFT RTs 3Cmb RBF 3Cmb Pyr 3Cmb
Species Count [%] [%] [%] [%] [%] [%] [%]
Amphin 96 41.67 73.96 79.17 80.21 79.17 80.21 85.42
Asiop 292 95.55 95.21 95.89 95.21 96.92 95.21 97.26
Atops 254 75.20 86.61 89.37 87.80 87.40 86.22 92.91
Baets 251 72.11 85.26 83.67 79.68 81.27 86.06 86.85
Calib 299 60.20 71.24 73.58 79.93 77.93 75.59 83.61
Camel 287 77.00 83.62 83.28 86.76 82.58 85.71 89.90
Capni 130 42.31 60.77 77.69 79.23 75.38 76.15 88.46
Cerat 296 82.77 84.80 88.85 87.50 75.68 88.18 90.88
Cinyg 72 26.39 36.11 59.72 63.89 22.22 69.44 79.17
Cla 54 12.96 35.19 51.85 83.33 55.56 77.78 87.04
Culop 95 52.63 68.42 67.37 81.05 66.32 76.84 80.00
Drunl 42 23.81 61.90 78.57 78.57 59.52 66.67 85.71
Epeor 200 89.00 93.50 87.00 89.00 92.00 90.00 93.00
Fallc 224 36.61 44.64 54.46 62.95 46.43 75.89 64.73
Hlpsy 67 77.61 82.09 89.55 92.54 80.60 86.57 95.52
Isogn 229 78.60 86.46 87.77 94.32 81.22 93.45 93.89
Kat 48 58.33 41.67 64.58 72.92 29.17 70.83 72.92
Leucr 131 79.39 92.37 85.50 89.31 96.18 90.84 96.18
Limne 329 93.01 92.71 96.96 96.05 94.53 96.05 98.18
Lpdst 77 45.45 84.42 81.82 76.62 76.62 81.82 87.01
Lphlb 27 3.70 51.85 44.44 44.44 7.41 55.56 59.26
Meg 72 41.67 38.89 50.00 69.44 55.56 63.89 77.78
Mscap 132 58.33 67.42 73.48 75.00 68.94 80.30 81.06
Per 51 1.96 29.41 45.10 45.10 0.00 50.98 52.94
Plmpl 126 75.40 85.71 83.33 88.89 87.30 81.75 92.06
Siphl 150 60.00 78.00 90.00 88.67 85.33 85.33 90.00
Skw 292 63.01 71.92 78.42 77.74 61.99 81.51 82.88
Sol 129 86.82 87.60 87.60 94.57 92.25 93.02 95.35
Taenm 270 69.63 86.67 88.89 90.00 88.89 88.52 91.48
Total 4722 68.21 77.95 81.66 84.16 77.51 84.50 88.06

Table 1. Species accuracy results. From left to right, first, image count. Next, single-level global-HOG descriptor with χ2 kernel.
Following three, stacked spatial-pyramid kernel (Pyr) classifier with single feature pair c: local HOG patches (HOGloc), BAS+SIFT
descriptors of salient curvature points (BAS), and SIFT detector and descriptor (SIFT). Last three, stacked classification using the 3-
feature-types combination (3Cmb) of Q: Random forest (RTs), RBF kernel (RBF), and spatial-pyramid kernel SVM (Pyr). Bold print
indicates the highest accuracy for each species.

applied to individuals from the species that attained the
highest species-identification accuracy of the single feature
classifiers. The red parts of the insects are highly discrimi-
native regions in the spatial histograms, which are positively
correlated when evaluated with the spatial-pyramid kernel.

Evidence Histogram Results The spatial histograms Hc
I

can also be computed by using descriptor probability scores
pcI,j based on leaf evidence [13] instead of simple leaf
votes. We performed two experiments using the experimen-
tal setup previously described, but with histograms com-
puted by evidence scores from the HOG and BAS+SIFT
random tree classifiers RTC . The overall accuracy results
obtained are 77.47% and 80.62% respectively, which shows

no notable difference with the accuracy obtained by using
votes. The similar performance is probably explained by
the large number of trees and the way the variables are ag-
gregated in the spatial-pyramid kernel SVM prediction.

5. Conclusion

Our stacked spatial-pyramid kernel method enables the
use of a discriminative stacking framework with the possi-
bility of multiple-feature combinations while retaining spa-
tial information. This method was applied on the large-
scale EPT29 dataset that emulates the insect specimen sam-
ples found in biological stream quality assessments. Au-
tomated insect species identification presents several chal-
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Figure 3. Representative heat-maps of local classification scores.
(a)(c) Example specimen images. (b)(c) Heat-maps of a single
channel m of their respective Hc

I histograms. The channel m pre-
sented is of the actual species of the specimen. Red represents the
highest scores, indicating some of the most discriminative region
patterns of that species. Each species is shown with the feature c
that achieved the highest accuracy (Table 1). First column, Epeor
species with dense grid HOG patches, Siphl with salient curvature
and BAS+SIFT descriptors, and Isogn with SIFT.

lenges, such as small inter-species differences due to closely
related species and significant intra-species variation due
to changes in position, orientation, pose, and variations
in developmental and degradation stages overcome by our
method. Our set of experiments with 29 insect taxa are
more ambitious in scope than previous studies [9, 12, 13]
with 9 taxa and show promise for real-world automated
biomonitoring systems. The spatial-pyramid kernel clas-
sifiers achieve higher classification rates than the random
trees and RBF kernel classifiers, reaching a similar perfor-
mance with just a single type of feature. A single-stage
SVM classifier with a global HOG descriptor, which is of-
ten successfully applied in object-class detection tasks, was
used as a baseline comparison of the two-level classifica-
tion methods, and was significantly outperformed by our
method. Finally, our method greatly benefited from com-
bining multiple different features, with the experiments on
the EPT29 insect images attaining an overall classification
boost of almost 4% over the single feature classifier with
the highest accuracy.
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